initial [II], yields decreased with decreasing initial [II] to a value of 50% at 0.01 M II.

The initial-rate method was employed and reactions were followed to approximately 5% completion. A series of rate determinations carried out at constant II concentration and varying III concentrations proved this reaction to be first order in III. A plot of pseudofirst-order rate constant vs. initial II concentration indicated that the reaction became essentially zero order in II at high II concentrations. The addition of dimethyl sulfide (IV) depressed the reaction rate at all concentrations of II and III. Three series of kinetic runs were carried out at different [IV], in which [II] was varied within each series and [III] was held constant. Plots of $[III]/(d[B_{10}H_{10}^{-2}]/dt)$ vs. $[II]^{-1}$ for each [IV]were linear and gave a common intercept of 2.1×10^{-4} sec. at $[II]^{-1} = 0$. The slopes (z) of each of these plots were plotted vs. [IV] present in each series of rate runs and a straight line described by the equation, z = 3.45 $\times 10^{4}$ [Me₂S] + 140 sec. mole 1.⁻¹ was obtained. The intercept of the latter line was identical with the slope obtained in the first series of plots with no added IV. This intercept requires the operation of a process (k_4) which removes the B₁₀H₁₂(ligand) intermediate from the system without producing B₁₀H₁₀⁻² or regenerating III. The results obtained with I and III are consistent with the following rationale⁶ in which the k_1 process

$$B_{10}H_{12}(ligand)_2 \xrightarrow{k_{-1}} B_{10}H_{12}(ligand) + ligand$$

 $\begin{array}{l} B_{10}H_{12}(\text{ligand}) + \text{NEt}_{\$} \xrightarrow{k_{\$}} B_{10}H_{11}^{-} + H\overset{+}{\text{NEt}_{\$}} + \text{ligand} \\ \\ B_{10}H_{11}^{-} + \text{NEt}_{\$} \xrightarrow{\text{very fast}} B_{10}H_{10}^{-2} + H\overset{+}{\text{NEt}_{\$}} \\ \\ B_{10}H_{12}(\text{ligand}) + \text{NEt}_{\$} \xrightarrow{k_{\$}} B_{10}H_{12}(\text{SMe}_{2})(\text{NEt}_{\$}) \end{array}$

 $B_{10}H_{12}(ligand) \xrightarrow{k_4}$ unidentified products

may become rate determining at high II concentrations.

It seems probable that the k_2 process involves proton abstraction by II with or without the concerted ejection of the second ligand molecule.

The proposed $B_{10}H_{12}(ligand)$ intermediate formally resembles $B_{10}H_{13}^-$. That the $B_{10}H_{12}(SMe_2)$ (V) reported by Knoth and Muetterties⁷ is not the intermediate involved in $B_{10}H_{10}^{-2}$ formation was shown by the fact that authentic V formed $B_{10}H_{10}^{-2}$ more than 10^3 times *slower* than III under the same conditions. As suggested by Lipscomb,⁸ two reasonable structures exist for $B_{10}H_{13}^-$ and two tautomeric $B_{10}H_{12}(ligand)$ structures may well exist. The formation of $B_{10}H_{10}^{-2}$ from V may involve the slow conversion of V to the reactive isomer. Conversely, the k_4 process may involve the moderately rapid conversion of the reactive intermediate to V.

Further work is in progress and will be reported at a later date.

(6) Where L = ligand and d[BitHitL]/dt = 0, d[BitHit^2]/dt = k_1 [BitHitL2] {k_2[Et_1N]/((k_1 + k_2)[Et_2N] + k_{-1}[L] + k_4)} or [BitHitL2]/(d[BitHitC2]/dt) = (1/[Et_2N]) {(k_{-1}[L] + k_4)/k_1k_3} + (k_2 + k_3)/k_1k_3. In the first series of plots, the slopes = (k_{-1}[L] + k_4)/k_1k_3 sec. mole l.^{-1}, and the intercepts = (k_2 + k_3)/k_1k_3 sec. In the scond plot, the slope = k_{-1}/k_1k_3 sec. and the intercept = k_4/k_1k_3 sec. mole l.^{-1}. Elimination of the k_1k_3 term gives (k_2 + k_3)/k_{-1} = 0.44 \pm 0.02 and (rate of k_4 process)/(rate of k_{-1} process) = k_4/(k_{-1}[L]) = 2.5 \pm 0.5 \times 10^{-4}/[L].

(7) W. H. Knoth and E. L. Muetterties, J. Inorg. Nucl. Chem., 20, 66 (1961).

(8) W. N. Lipscomb, Advan. Inorg. Chem. Radiochem., 1, 117 (1959).

(9) Alfred P. Sloan Research Fellow.

Acknowledgment.—The authors wish to thank the Advanced Research Projects Agency through the Army Research Office (Durham) for generous support of this work.

DEPARTMENT OF CHEMISTRY THE UNIVERSITY OF CALIFORNIA RIVERSIDE, CALIFORNIA M. FREDERICK HAWTHORNE⁹ RICHARD L. PILLING RUSSELL N. GRIMES

Received September 30, 1964

A Crystalline Alkoxydiarylalkylidenephosphorane from the Reaction of Ethyl Diphenylphosphinite with an α - β -Unsaturated Ketone¹

Sir:

Harvey and Jensen² ascribed the *cyclic dialkoxydi*arylalkylphosphorane structure³ I to the adduct, "m.p. 116–118°," which is formed from ethyl diphenylphosphinite and *trans*-dibenzoylethylene in an ether solution.⁴ We should like to report that this substance is actually the *alkoxydiarylalkylidenephos*phorane³ II, a moderately stable phosphinitemethylene.

Equimolar amounts of ethyl diphenylphosphinite⁵ and *trans*-dibenzoylethylene were allowed to react at 20° in anhydrous 1,2-dimethoxyethane (*ca.* 1.6 *M*). The infrared spectrum of the resulting clear, red solution after 3 hr. showed that the reaction was nearly complete. The 1:1 adduct crystallized and was filtered after 2 days; yield, 42%; m.p. 118–120° (crude). Recrystallization from benzene–hexane gave II, m.p. 122–123°. Spectral characteristics are: infrared bands, (CH₂Cl₂, μ): 5.97 (strong C=O) and 6.65 (broad and strong "enolate" C=O⁶); $\delta_{P^{41}} =$ -54.2 p.p.m.⁷ (CH₂Cl₂); H¹ n.m.r. (CDCl₃; p.p.m. in the τ -scale): multiplet at 2.65 (aromatic), 2H¹

(1) This investigation was supported by the National Science Foundation (G 19509) and by Public Health Service Research Grant No. CA-04769-05 from the National Cancer Institute.

(2) R. G. Harvey and E. V. Jensen, Tetrahedron Letters, No. 26, 1801 (1963).

(3) Structure I: 2-ethoxy-2,2-diphenyl-3-benzoyl-5-phenyl- Δ^4 -oxaphospholene; structure II: ethoxyldiphenyl- (benzoyl-, phenacyl-) methylenephosphorane.

(4) For other reactions of α - β -unsaturated carbonyl compounds with trivalent phosphorus compounds: (a) V. A. Kukhtin and K. M. Orekhova, J. Gen. Chem. USSR., **30**, 1539 (1960); (b) G. Kamai and A. V. Kukhtin, *isid.*, **31**, 1621 (1961), and earlier papers; (c) V. A. Ginsburg and A. Ya. Yakubovich, J. Gen. Chem. USSR, **30**, 3944 (1960); (d) E. R. DeSombre, R. G. Harvey, and E. V. Jensen, Abstracts, Division of Organic Chemistry, 146th National Meeting of the American Chemical Society, Denver, Colo., Jan., 1964, p. 21C.

(5) R. Rabinowitz and J. Pellon, J. Org. Chem., 26, 4624 (1961).

(6) Triphenylbenzoylmethylenephosphorane [F. Ramirez and S. Dershowitz, J. Org. Chem., 22, 41 (1957)] has an "enolate" carbonyl at 6.63 μ . The P¹¹ n.m.r. shift (vs. 85% H_8PO4) is -16.7 p.p.m. (CHCls). Its hydrochloride has -20.7 p.p.m. (CHCls). A. J. Speziale and K. W. Ratts [J. Am. Chem. Soc., 85, 2790 (1963)], however, reported -21.6 p.p.m. for the former ylid, and -16.9 p.p.m. for the latter hydrochloride (both in CHCls).

(7) All P^1 n.m.r. spectra were determined at 40.5 Mc./sec. and are expressed in p.p.m. vs. $85\,\%$ H_*PO4.

quintet at 5.37, J = 7 c.p.s. (PO CH_2 CH₃); 2H¹ doublet at 6.33, $J_{HP} = 21$ c.p.s. (equivalent phenacyl protons); $3H^1$ triplet at 8.52, J = 7 c.p.s. (CH_3CH_2-) (Fig. 1). The reaction was nearly complete in 10 min. in methylene chloride solution (ca. 1.7 M). II was isolated in 32% yield when this solution was evaporated after 5 days. II is very susceptible to moisture.

Structure I should give a positive P³¹ shift,^{8,9} while structure II would be expected to give a negative P^{31} shift.6.9

The phosphinitemethylene II reacted with benzyl bromide at 20° and gave the phosphine oxide enol ether III in quantitative yield. III had m.p. 179-180° (benzene). Anal. Calcd. for C₃₅H₂₉O₃P: C, 79.5; H, 5.5; P, 5.9. Found: C, 79.8; H, 5.6; P, 5.9. Spectral properties are infrared bands (CH₂Cl₂, μ): 5.95 (C=O), 6.15 (C=C), and 8.48 (PO); $\delta_{PH} =$ -28.6 p.p.m. (CDCl₃); H¹ n.m.r. (CDCl₃, τ): 25H¹ multiplet at 2.70 (aromatics); 2H¹ singlet at 6.00 $(C_{6}H_{5}CH_{2}O);$ 2H¹ doublet at 6.10, $J_{HP} = 16$ c.p.s. (two equivalent phenacyl protons).

To our knowledge, II is the first isolated, crystalline member of this family. Some phosphitemethylenes have been reported. 10-12

 $(8) \ The \ crystalline \ 2,2,2-trimethoxy-3-phenyl-4-acetyl-5-methyl- \Delta^4-oxa-barrow and a set of the set o$ phospholene, made from trimethyl phosphite and 3-benzylidene-2,4-pentanedione, has $\delta_{P}^{a1} = +27.9 \text{ p.p.m.}; cf. F. Ramirez, A. V. Patwardhan, and S. R. Heller, J. Am. Chem. Soc.,$ **86** $, 514 (1964), compound VI, Table I. (9) <math>\delta_{P}^{a1}$ in p.p.m.: (CH₈O)₈P, -140.0; C₂H₈OP(C₆H₈)₂, -109.8; P

 $(C_8H_b)_{\delta_1} + 6.$

(10) W. J. Middleton, U. S. Patent 3,067,233 (Dec. 4, 1962).

(11) F. Ramirez and O. P. Madan, Abstracts, Division of Organic Chemistry, 148th National Meeting of the American Chemical Society, Chicago, Ill., Aug., 1964, p. 13S.

(12) G. H. Birum, U. S. Patent 3,058,876 (Oct. 16, 1962).

DEPARTMENT OF CHEMISTRY	Fausto Ramirez
STATE UNIVERSITY OF NEW YORK	
at Stoney Brook	O. P. Madan
STONEY BROOK, NEW YORK	C. P. Smith

RECEIVED AUGUST 18, 1964

The Chemistry of Ion Radicals. The Free-Radical Addition of N-Chloramines to Olefinic and Acetylenic Hydrocarbons

Sir:

We recently reported1 the free-radical addition in acidic media of N-chloramines to butadiene, which afforded 1-chloro-4-dialkylamino-2-butenes (I) (eq. 1). Minisci and Galli² have subsequently suggested that

$$R_{2}NCl + CH_{2} = CHCH = CH_{2} \xrightarrow[HoAc]{H_{2}SO_{4}} R_{2}NCH_{2}CH = CHCH_{2}Cl \quad (1)$$

the addition of an aminium radical R₂N+H to an unsaturated hydrocarbon is limited to conjugated dienes. We therefore wish to report that chloramines undergo free-radical addition to terminal olefins and allenes and to terminal and internal acetylenes in sulfuric acid-acetic acid in yields of 30-60%, thereby demonstrating the applicability of the chloramine addition reaction to these classes of unsaturated hydrocarbons.

We reported previously^{1,3} that 1,1-diphenylethylene and norbornadiene reacted with chloramines via ionic rather than radical pathways; our further results now demonstrate that aliphatic terminal monoolefins undergo the desired radical addition (eq. 2) to afford β -chloramines (II) (Table I, entries 1, 2), although internal

olefins apparently undergo only ionic reactions (entry 4). However, intramolecular hydrogen abstraction by an aminium radical (eq. 3), which leads ultimately to a pyrrolidine (the Hofmann-Loeffler reaction⁴), precludes addition of the aminium radical to terminal olefinic bonds when the chloramine contains an appropriately placed methylene group (entry 3).

 $CH_{3}CH_{2}(CH_{2})_{3}\overset{\tau}{N}HC_{5}H_{11} \longrightarrow CH_{3}CH(CH_{2})_{3}\overset{\tau}{N}H_{2}C_{5}H_{11} \quad (3)$

⁽¹⁾ R. S. Neale and R. L. Hinman, J. Am. Chem. Soc., 85, 2666 (1963).

⁽²⁾ F. Minisci and R. Galli, Tetrahedron Letters, 167 (1964).

⁽³⁾ R. S. Neale and E. B. Whipple, J. Am. Chem. Soc., 86, 3130 (1964) (4) M. E. Wolff, Chem. Rev., 63, 55 (1963).